Part no.	M22-K01
Catalog No.	216378
Alternate Catalog	M22-K010
No.	
EL-Nummer	4355364
(Norway)	

Delivery program

Product range
Basic function accessories

Accessories

Accessories
Standard/Approval
Construction size
Connection technique
Fixing
Degree of Protection
Connection to SmartWire-DT
For use with

Contacts

N/C = Normally closed

Notes

Actuator travel and actuation force as per DIN EN 60947-5-1, K.5.4.1

Maximum travel

Minimum force for positive opening
Connection type
Description of HIA trip-indicating auxiliary contact

Description standard auxiliary contact HIN

Connection technique
 technique

Notes

The following can be clipped into the switches:

- NZM1: a standard auxiliary contact
- NZM2: up to two M22-(C)K... standard auxiliary contacts
- NZM3: up to three M22-(C)K... standard auxiliary contacts
- NZM4: up to three M22-(C)K... standard auxiliary contacts

Any combinations of the auxiliary contact types are possible.

Accessories

Contact elements
Auxiliary contact
Standard auxiliary contact, trip-indicating auxiliary switch
UL/CSA, IEC
NZM1/2/3/4
Screw terminals
Front fixing
IP20
no
NZM1(-4), 2(-4), 3(-4), 4(-4)
PN1(-4), 2(-4), 3(-4)
N(S) $1(-4), 2(-4), 3(-4), 4(-4)$
$1 \mathrm{NC} \Theta$
2) safety function, by positive opening to IEC/EN 60947-5-1
4.8
5.7

15
Single contact
General trip indication ' + ', when tripped by shunt release, overload release, shortcircuit release or by the residual-current release due to residual-current.
Can be used with NZM1, 2, 3 circuit-breaker: a trip-indicating auxiliary contact can be clipped into the circuit-breaker.
Can be used with NZM4 circuit-breaker: up to two standard auxiliary contacts can be clipped into the circuit-breaker.
Any combinations of the auxiliary contact types are possible.
Not in combination with switch-disconnector PN...
Marking on switch: HIA
Labeling in FI-Block: HIAFI.
If the trip-indicating auxiliary switch in the fault current block is used, the NC contacts operates as a N / O contact and the NC contact operates as an N / O contact.

Switching with the main contacts Used for indicating and interlocking tasks. Can be used with NZM1 circuit-breaker: a standard auxiliary contact can be clipped into the circuit-breaker.
Can be used with NZM2 size circuit-breaker: a standard auxiliary contact can be clipped into the circuit-breaker.
Can be used with NZM3, 4 circuit-breaker: up to three standard auxiliary contacts can be clipped into the circuit-breaker.
Any combinations of the auxiliary contact types are possible.
Marking on switch: HIN.
On combination with remote operator NZM-XR... the right mounting location of standard auxiliary contact HIN can be fitted only with individual contacts.
Screw terminals

In combination with remote operator NZM-XR... only single contacts can be fitted to some installation locations of the standard auxiliary contact.
NZM2: Only single contact can be fitted in left installation location of standard auxiliary contact
NZM3: Only single contact can be fitted in installation locations of standard auxiliary contact.
NZM4: Only single contact can be fitted in right installation location of standard auxiliary contact.

Technical data

General
 Standards
 Lifespan, mechanical
 Operating frequency
 Actuating force
 Operating torque (screw terminals)
 Degree of Protection
 Climatic proofing
 Ambient temperature
 Open

Mechanical shock resistance to IEC 60068-2-27 Shock duration 11 ms, halfsinusoidal

Terminal capacities

Solid

Stranded

Flexible with ferrule

Contacts

Rated impulse withstand voltage
Rated insulation voltage
Overvoltage category/pollution degree
Control circuit reliability
at $24 \mathrm{VDC} / 5 \mathrm{~mA}$
at $5 \mathrm{VDC} / 1 \mathrm{~mA}$

Max. short-circuit protective device

Fuseless		Type	PKZM0-10/FAZ-B6/1
Fuse	gG/gL	A	10
Switching capacity			
Rated operational current	I_{e}	A	
AC-15			
115 V	I_{e}	A	6
220 V 230 V 240 V	I_{e}	A	6
380 V 400 V 415 V	I_{e}	A	4
500 V	I_{e}	A	2
DC-13			
24 V	I_{e}	A	3
42 V	I_{e}	A	1.7
60 V	I_{e}	A	1.2
110 V	I_{e}	A	0.6
220 V	I_{e}	A	0.3
Lifespan, electrical			
AC-15			
$230 \mathrm{~V} / 0.5 \mathrm{~A}$	Operations	$\times 10^{6}$	1.6
$230 \mathrm{~V} / 1.0 \mathrm{~A}$	Operations	$\times 10^{6}$	1
$230 \mathrm{~V} / 3.0 \mathrm{~A}$	Operations	$\times 10^{6}$	0.7
DV-13			
$12 \mathrm{~V} / 2.8 \mathrm{~A}$	Operations	$\times 10^{6}$	1.2

Design verification as per IEC/EN 61439

Technical data for design verification

Rated operational current for specified heat dissipation	I_{n}	A	6
Heat dissipation per pole, current-dependent	$\mathrm{P}_{\text {vid }}$	W	0.11
Equipment heat dissipation, current-dependent	$\mathrm{P}_{\text {vid }}$	W	0
Static heat dissipation, non-current-dependent	$\mathrm{P}_{\text {vs }}$	W	0
Heat dissipation capacity	$\mathrm{P}_{\text {diss }}$	W	0
Operating ambient temperature min.		${ }^{\circ} \mathrm{C}$	-25
Operating ambient temperature max.		${ }^{\circ} \mathrm{C}$	70
IEC/EN 61439 design verification			
10.2 Strength of materials and parts			
10.2.2 Corrosion resistance			Meets th
10.2.3.1 Verification of thermal stability of enclosures			Meets t
10.2.3.2 Verification of resistance of insulating materials to normal heat			Meets th
10.2.3.3 Verification of resistance of insulating materials to abnormal heat and fire due to internal electric effects			Meets th

Meets the product standard's requirements.

10.2.4 Resistance to ultra-violet (UV) radiation	Meets the product standard's requirements.	
10.2.5 Lifting	Does not apply, since the entire switchgear needs to be evaluated.	
10.2.6 Mechanical impact	Does not apply, since the entire switchgear needs to be evaluated.	
10.2.7 Inscriptions	Meets the product standard's requirements.	
10.3 Degree of protection of ASSEMBLIES	Does not apply, since the entire switchgear needs to be evaluated.	
10.4 Clearances and creepage distances	Meets the product standard's requirements.	
10.5 Protection against electric shock	Does not apply, since the entire switchgear needs to be evaluated.	
10.6 Incorporation of switching devices and components	Does not apply, since the entire switchgear needs to be evaluated.	
10.7 Internal electrical circuits and connections	Is the panel builder's responsibility.	
10.8 Connections for external conductors	Is the panel builder's responsibility.	
10.9 Insulation properties	Is the panel builder's responsibility.	
10.9.2 Power-frequency electric strength	Is the panel builder's responsibility.	
10.9.3 Impulse withstand voltage	Is the panel builder's responsibility.	
10.9.4 Testing of enclosures made of insulating material	The panel builder is responsible for the temperature rise calculation. Eaton will provide heat dissipation data for the devices.	
10.10 Temperature rise	Is the panel builder's responsibility. The specifications for the switchgear must be observed.	
Is the panel builder's responsibility. The specifications for the switchgear must be		
10.11 Short-circuit rating		observed.
The device meets the requirements, provided the information in the instruction		
leaflet (IL) is observed.		

Technical data ETIM 8.0

Low-voltage industrial components (EG000017) / Auxiliary contact block (ECOOOO41)
Electric engineering, automation, process control engineering / Low-voltage switch technology / Component for low-voltage switching technology / Auxiliary switch block (ecl@ss10.0.1-27-37-13-02 [AKN342013])

Number of contacts as change-over contact
Number of contacts as normally open contact 0
Number of contacts as normally closed contact 1
Number of fault-signal switches 0
Rated operation current le at AC-15, 230 V A 6
Type of electric connection
Model
Mounting method
Lamp holder

```
0
```

0

Screw connection
Top mounting and integrable
Front fastening
None

